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Visual Degradation

Data Acquisition

Degradation before Degradation in Degradation after
Data Acquisition Data Acquisition Data Acquisition

 Heavy Rain/Snow * Downsample * Scratches

e Underwater * Motion Blur « Watermark

 Low Light * System Noise *  Mildew

e Haze/Sandstorm * Optical Distortion « Compression Loss



Image Degradation Model

* f{x,y) — image before degradation, ‘true image’

* g(x,y) — image after degradation, ‘observed image’
* h(x,y) — degradation filter

. f(x,y) — estimate of f{x,y) computed from g(x,y)

* n(x,y) — additive noise

f(x,y) g(x.y) fix.y)

degradation restoration

|

h(x,y) n(x,y)

gx.y) = h(x.y)xf(xy) + n(x,y) € G(u,v) = H(u,v) F(u,v) + N(u,v)



Example: Image Blur

Gaussian

Inverse FT

Blurring acts as a low pass filter and attenuates higher spatial frequencies



Goal of Image Enhancement Diversified

* From traditional signal processing (reconstruction) viewpoint
e Full-reference metrics: PSNR, SSIM, etc.

e ... to human perception (subjective quality)-based
* No-reference metrics (e.g., NIQE), and human study

* ... And to task-oriented, “end utility”-based
» Typical examples: dehazing, deraining, (extreme) light, underwater ...
* Representative datasets: RESIDE dehazing (TIP’18), MPID deraining (CVPR’19)
* CVPR UG2+ Challenge: http://www.ug2challenge.org



http://www.ug2challenge.org/

Discussion: Patch-Based v.s. Image-Level

* The term “patch-based” may be vague because it can refer to any
algorithm that works with small image patches.

« BM3D image denoising, sparse coding for image super-resolution,
image compression algorithms such as JPEG...

* Traditional image processing works on patches
» Efficiency (esp. when model learning capacity is limited)
* Alot of natural image statistics and similarities to exploit

* Deep learning image processing works on whole images
* Mostly obtain better results as they are more “global-view”
e But often ignore some useful prior knowledge on patch-level



Discussion: Self v.s. External Similarity

* Natural images contain abundant self-similarities.
* For every patch in a natural image, we can probably find many similar patches
in the same image.

* Nonlocal patch-based methods exploit this self-similarity by finding/collecting
similar patches and processing them jointly.

e Cross-scale self-similarity (Example Below)




Learning to Enhance Images

e Data-driven training of “end-to-end” models (usually assuming “pairs”)

* Prior/physical information can still be helpful
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Low Quality Image/Video Data-Driven Solution

High Quality Image/Video



Image Denoising

Level Vision Problem
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Image Denoising

» Simplest Low-Level Vision Problem

Magic

Denoising
Algorithm




Conventional Methods
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Image Deno

» Collaborative Filtering

Non-local Mean, BM3D, etc




Classical Image Denoising: BM3D

e BM3D = Block-Matching and 3D filtering, suggested first in 2007.

e Given a 2D square-block, finds all 2D similar blocks and “group” them
together as a 3D array, then performs a collaborative filtering (method that
the authors designed) of the group to obtain a noise-free 2D estimation.

e Averaging overlapping pixels estimations.

e Gives state of the art results.

Based on: K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-D
transform-domain collaborative filtering. IEEE Transactions on Image Processing,
16(8):2080-2095, 2007.

Patch-based + Self-Similarity + Domain Expertise



Image Denoising — Conventional Methods

» Collaborative Filtering
* Non-local Mean, BM3D, etc

* Piece-wise Smooth
* Total Variation, Tikhonov Regularization, etc
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Image Denoising — Conventional Methods

Randomized Inverse Feurier Few active

* COIIa borative Filtering e bearmforming weights Macrix frequencics
* Non-local Mean, BM3D, etc

* Piece-wise Smooth
» Total Variation, Tikhonov Regularization, etc

e Sparsity
* Discrete Cosine Transform (DCT), Wavelets, etc
* Dictionary Learning: KSVD, OMP, Lasso, etc

* Analysis KSVD, Transform Learning, etc

It is all about

good “prior”




Image Deblurring

* Blurred Measurement:
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Image Deblurring

e Estimate the stable image:

Algorithm




Image Deblurring

* Non-blind Image Deblurring

e Suppose you know the blurring kernel, M.

*xXx=f(y,M)

 All training data need to have consistent M, as the testing data



Image Deblurring

* Non-blind Image Deblurring

e Suppose you know the blurring kernel, M.

*xXx=f0,M)

 All training data need to have consistent M, as the testing data

 Blind Image Deblurring — More challenging yet practical problem

» Estimate both the image, and the blurring kernel

s XM} =f(y)



Wiener Filtering Fuv) = W) Gu

*
W(u,v) = H(u, )
Norbert Wiener |H (u,v)|* + K (u,v)
(1894-1964)
“Father of cybernetics” where

K(u,v) = Sy(u,v)/S¢(u,v)
St(u,v) = |F(u,v)|* power spectral density of f(z,y)

Restoration with a Wiener filter Sy(u,v) = |N(u,v) |2 power spectral density of n(z,y)

G(u,v) = Hu,v) F(u,v) + N(u,v)
Fu,v) = Wu,v) G(u,v) Limitation: Assuming known

stationary signal and noise
spectra, and additive noise

G(u,v) Fu,v)

M F.T. Wiener filter |.F.T. M




Example: Motion Deblurring by Wiener Filtering

blur = 20 pixels *
u pIX W (u, 0) = H*(u,v)

|H(u,v)>+ K (u,v)

1. Compute the FT of the blurred image A
2. Multiply the FT by the Wiener filter ~ F(u,v) = W(u,v) G(u,v)
3. Compute the inverse FT



Maximum a posteriori (MAP) Estimation

E « original f{x,y)
» motion blur

« additive intensity noise

For an image with n pixels, write this process as

g =Af +n

where g and f are n-vectors, and A is an n X n matrix.

* Estimate f{x,y) by optimizing a cost function:

observed generated
image \ / 1mage

arg min (g — Af)? + Ap (f)
f N\ ~ J |

Likelihood/ prior/
loss function regularization

f

Example

p(f) = (Vf)?

to suppress high frequency noise



Blind Deblurring?

» Estimate f(x,y) and h(x,y) by optimizing a cost function:

observed generated
image image

|~

min (g — A(h) £)° + Apy (F) + ppp, ()

Y Y Y

Likelihood/ image blur
loss function prior prior



Blind Deblurring

estimated

blurred image blur filter

restored image




(a) Blurred photo (d) Suneral. [15]

(e) Xu et al. [33] (f) Pan et al. [15] (g) DeepDeblur [?] (h) SRN [?]



Image Super-Resolution

H(z)
Low pass filter

2 H(©)|

v(n)

M

“|  Down sampler

y(n)



Image Super-Resolution

e Estimate the stable image: Xx=f(y)

Magic

Super-Resolution
Algorithm




Image Super Resolution by Deep Learning
(2013 —2017)
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Super-resolution results of “148026” (B100) with scale factor x3 (from VDSR paper)

L

Ground Truth
(PSNR, SSIM)

A+ [22
(2292.0.7379)

RFL [1%]
(22.90, 0.7332)

SelfEx [11]
(23.00, 0.7439)

SRCNN [5]
(23.15, 0.7487)

VDSR (Ours)
(23.50, 0.7777)




Many More Tasks in the Real World!

llllllll

(1 J

Underwater Dehazing Inpainting Super Resolution
Enhancement

Denoising Low Light Enhancement
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